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The unsafe zone in machining is a region of
the parameter space where steady-state cutting
operations may switch to regenerative chatter for
certain perturbations, and vica versa. In case of
milling processes, this phenomenon is related to the
existence of an unstable quasiperiodic oscillation,
the in-sets of which limit the basin of attraction
of the stable periodic motion that corresponds to
the chatter-free cutting process. The mathematical
model is a system of time-periodic nonlinear delay
differential equations. It is studied by means of a
nonlinear extension of the semidiscretization method,
which enables the estimation of the parameter ranges
where the unsafe (also called bistable) zones appear.
The theoretical results are checked with thorough
experimental work: first, step-by-step parameter
variations are adapted to identify hysteresis loops,
then harmonic burst excitations are used to estimate
the extents of the unsafe zones. The hysteresis
loops are accurately distinguished from the dynamic
bifurcation phenomenon that is related to the dynamic
effect of slowly varying parameters. The experimental
results confirm the existence of the bistable parameter
regions.
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1. Introduction
Milling processes (see figure 1a) are subjected to a so-called surface regeneration effect due to the
rotating motion of the tool: one of the cutting edges leaves a pattern on the machined surface
(see figure 2a), which is then cut by the subsequent cutting edge. This effect was recognized
and modelled via delayed vibratory states by the pioneers of the field in the 1950’s [1,2], while
the mathematical theory of the governing delay differential equations (DDE’s) was established
later [3]. The phenomenon has been in the focus of many studies (for examples, see [4–8]) due to
the practical relevance of avoiding chatter. Chatter is an undesired vibratory motion of the cutting
tool relative to the machined workpiece; its sound is clearly distinguishable from that of a chatter-
free cutting process. If the relatively low-frequency vibration modes of machine tool structures
are involved in chatter then fatigue may damage the machines [9], while high-frequency chatter
increases cutting edge wear [10] and reduces machined surface quality [11].

Due to the periodic cutter/workpiece engagement (CWE), the milling process is also subjected
to both external forcing and parametric excitation, which have time-period that is identical to
the tooth pass period, i.e., to the delay [12]. The corresponding time-periodic response of the
system is actually the desired stationary (or steady-state) cutting process. The onset of chatter
is related to the loss of stability of this desired periodic motion. Stability can be predicted
by means of linearization around this stationary periodic motion, which leads to a non-trivial
problem when both parametric excitation and time delay are present (see [13–16]). In practice,
the results of these calculations are usually summarized and visualized in the so-called stability
lobe diagrams (SLD’s) [17] where the stability boundaries are depicted with respect to the two
most relevant cutting parameters: the spindle speed Ω and the axial depth of cut a. Along the
stability boundaries, two types of vibrations occur: the classical self-excited ones are related
to generalized Hopf bifurcations (H), also called Neimark-Sacker bifurcations, while the period
doubling vibrations occur at flip bifurcations, also called period doubling (PD) bifurcations [18].

If SLD’s are calculated in manufacturing industry, the most commonly used method is
the so-called zeroth order approximation (ZOA) [19], which is based on time averaging that
neglects most of the effects of parametric excitation. This can be considered as a modified D-
subdivision method [20], which uses directly the frequency response functions (FRF’s) of the
machine tool/tool/workpiece system. More accurate SLD’s can be constructed by applying
Floquet theory [13] to extend ZOA with further frequency modulations; these are often referred to
as the multi-frequency (MF) solutions in the literature [16,21–24].

Accurate SLD’s can also be produced with so-called time-domain based methods. These
include weighted residual methods such as collocation techniques, different polynomial based
methods and least square based solutions [25]. The most straightforward method is the
semidiscretization method (SDM), which is based on the discretizetion of the delayed state
only [26–29], while the time derivatives are kept without discretization. Most of the roughing
operations can be accurately analysed by fast ZOA algorithms. However, especially for finishing
operations that typically involve interrupted milling processes [30], MF or time domain based
solutions are needed to describe mode interactions [31] and to identify all the stability boundaries
with PD bifurcations [32].

The cutting force acting at the cutting edge is an essential part in the mathematical models
of milling processes. Its dependence on the state variables is influenced by many underlying
physical phenomena that are still unexplored in their full complexity. All these effects are
combined in the so-called cutting force characteristics, which is still determined empirically by
extensive laboratory tests [17]. It is typical to consider the cutting force proportional to the chip
width w and as a function of the local chip thickness h described by a specific cutting force
characteristics f(h). For this, there are several simplified mathematical expressions: linear (L),
shifted linear (SL), power (P), cubic polynomial (C) and exponential (E) functions (see figure
1c, [33]). Note that many of these expressions involve nonlinearity, which has key importance
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in what follows. Moreover, the cutting force is ’switched off’ when the chip thickness becomes
zero or ’negative’. This introduces also a kind of non-smooth behaviour [34] in the system.

In autonomous systems, Hopf bifurcation means that, at the stability boundary of the steady-
state (trivial) solution, a periodic motion (limit cycle) emerges, which is stable or unstable
around the unstable or stable steady state solution, then referred to as super- or subcritical
Hopf bifurcations, respectively [35]. This applies directly for the autonomous models of turning
processes. The theory was extended for time-periodic [13] and for delayed systems [3] using
infinite dimensional state spaces. In time-periodic systems, the role of the trivial solution is taken
by periodic ones, and the role of limit cycles are taken by quasi-periodic oscillations with two
essential frequencies, one of them related to the time-periodicity of the system.

There are numerous studies on the ’criticality’ (in other words, on the sense) of the bifurcations
in manufacturing processes. Most of them report subcritical behaviour, which implies the ’unsafe’
nature of the cutting processes as explained later in detail [30]. These calculations are analytically
demanding: normal form theory can be combined with centre manifold reduction [36–40],
alternatively, multiple scales [41] or Galerkin methods [42] can be applied. Numerical solutions
are also available by solving the related boundary value problem and calculating the emerging
invariant limit cycle in autonomous systems (like turning) or invariant torus in the time-periodic
case (like milling) [33,40,43,44]. The subcriticality induces the coexistence of the stable stationary
cutting (SSC) solution and the chattering solution in a bistable [45] or unsafe zone [46] in the SLD’s
close to the stability boundaries. Subcritical phenomena are usually identified experimentally
by means of the so-called hysteresis measurement [46] (figure 2d), when one of the key cutting
parameters (usually the chip width or the axial depth of cut) is selected as bifurcation parameter,
and it is first increased and then decreased sweeping through the critical domain around the
stability limit. The unstable object is assumed to exist between the separated stable branches
of the hysteresis loop. There exist more advanced techniques to trace unstable periodic orbits
experimentally by means of feedback [47], but this kind of control was not realizable due to the
lack of appropriate actuators.

There is a critical point of this type of experiments: the slowly varied bifurcation parameter
may slightly modify the bifurcation phenomenon, which is also called dynamic bifurcation
effect [48]. This means that due to the continuous variation of the bifurcation parameter, the
transition between the stable and unstable states occurs beyond the transition point for the
constant parameters case. This shift can also be taken as hysteresis by mistake.

The goal of this study is to confirm the existence of the unsafe (bistable) zones in milling
processes by means of extensive experimental work that excludes the effect of slowly variable
parameters. In order to achieve this goal, the measurements have to be planned carefully
by taking into account the theoretical linear and nonlinear behaviour of the regenerative
phenomenon occurring in different milling operations (see figure 1ad).

(a) Review on surface regeneration
Surface regeneration is the most influential phenomenon that affects the milling process. Most of
the chatter suppression techniques [49] are based on the disruption of simple regeneration of the
one single constant delay τ in dynamic models. This delay is actually equal to the tooth passing
period TZ = 2π/ΩZ = 2π/Ω/Z for a conventional helical milling tool with Z number of equally
spaced cutting teeth (figure 1d i).

To describe special milling tools one needs to model irregularly spaced pitch angles ϕp,
irregular helix angle η, and the irregular local geometry described by the lead angle κ and the
local radii R (see figure 1). Moreover, spindle speed can be modulated, too, that directly disturbs
the regeneration in time. In order to describe the dynamics of milling, the angular position ϕi(z, t)
(figure 1a) of the cutting edge i currently in cut must be traced along the axial axis z of the tool.
Besides, the corresponding angular position of the (i+ l)th edge in the past ϕi+l(z, t− τi,l(z, t))
that produced the surface underneath the ith edge must also be found. By assuming moderate
feed vf and vibration amplitude to the tool envelope diameter D, the following relationship

Page 24 of 40

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

4

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

Figure 1: (a) shows the sketch of the milling operation. (b) shows the regeneration effect in milling
with hg,i = minl hg,i,l (1.2), while (c) shows the different cutting force characteristics (q= t, r, a)
used in the literature [33]. Part (d) presents the different chatter suppression techniques [49]
designed based on the disturbance of the simple delay τ of conventional (d i) milling tool.

holds: ϕi(z, t) =ϕi+l(z, t− τi,l(z, t)). Without detailing the description [50,51], helix and pitch
variation of the edges can be described by ϕp,i(z) (i= 1, 2, . . . , Z) functions. Since irregular radii
Ri(z) can cause missed cuts [50], while larger amplitude vibration can lead to fly-over [30],
delays can occur in all possible consecutive combinations of the pitch angle functions. Thus, the
following can be stated

l−1∑
k=1

ϕp,(i+k)modZ(z) =

∫ t
t−τi,l(z,t)

Ω(ξ)dξ, (1.1)

which leads to an explicit formula for the delay if Ω(t) =Ω, but remains an implicit definition
if Ω(t). To assess which delay is effective at the current cut, the minimum of all possible chip
thickness values is taken as

hg,i(z, t)≈minl
(
nᵀ(ϕi(z, t), z)

(
x(t)− x(t− τi,l(z, t)) + τi,l(z, t)vf+

(Ri(z)−Ri+l(z))eR(ϕi(z, t)))) ,
(1.2)

hi(z, t,xt(ϑ)) := gfo,i(z, t)hg,i(z, t), gfo,i(z, t) =H(hg,i(z, t)), (1.3)

according to [52] (see figure 1b). The so-called geometric chip thickness hg in (1.2) is approximated
as the projection of the local movement of the cutting edge to the local normal direction n [50]. In
(1.2) ex represents the feed direction, while eR is the local radial direction perpendicular to z (see
figure 1a). Since hg can be negative, a screen function gfo is introduced using the Heaviside step
function H , which leads to the real effective chip thickness h in (1.3) [33].

In contrast to the conventional helical tool (figure 1d i) with a single constant delay τi,l(z, t) =
τ , variable pitch tools (figure 1d ii) introduce up toNτ ≤Z different constant delays τi,l(z, t) = τk
(k= 1, 2, . . . , Nτ ). This kind of tools are available in the market, although their optimal selection
is important to achieve the expected performance [53]. The so-called serrated cutters have varying
local radii Ri(z) that produce a spatial phase shift between the consecutive edges (figure 1d iii).
This way, more disturbance in the regeneration can be introduced by intentionally creating missed
cuts [50,54] with constant delays τi,l(z, t) = τk (Nτ ≤Z2 − (Z − 1)). Using the correct feed, these
tools can approach the ideal ’one-tooth’ good stability properties. Moreover, serrated tools utilize
the degressive nature of the nonlinear cutting force characteristics (figure 1c) by setting the
workpoint to a higher feed region [50]. Linear (figure 1d iv) and nonlinear (figure 1d v) variation
on the helix introduces continuous variation of the pitch angles, thus, τi,l(z, t) = τk(z) [55–59].
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This continuous variation of the delay can be described mathematically with distributed delays
[51]. These tools are also available in the market, while their performance and selection are still in
question. Finally, spindle speed variation (figure 1d vi) introduces time dependency of the delay
τi,l(z, t) as in (1.1) [60–62]. Special tools are important at the high spindle speeds, while spindle
speed variation is effective in low spindle speed zones, especially for turning operation [49].

In this work we consider conventional tools with regular edge geometry subject to constant
spindle speed Ω(t) =Ω, which results in a single constant delay τi,l(z, t) = τ = TZ .

(b) Equations of motion
The general form obtained from experimental modal analysis [63] is given as

q̇(t)− [λl]
2n
l=1 q(t) =Uᵀ F(t,xt(θ)), (1.4)

where λk =−ζkωn,k + ωd,ki (k= 1, 2, . . . , n and λn+k = λk). The kth damped natural angular
frequency ωd,k originates from the undamped one ωn,k and the modal damping ratio ζk as ωd,k =

ωn,k

√
1− ζ2k . The mass normalized modal transformation matrix U contains 2nmode shapes Uk.

This transforms the modal coordinates q to spatial (x, y, z) ones as col(x, ẋ) = col(U,U[λl]
2n
l=1)q.

The expression of the cutting force reads

F(t,xt(θ)) =−
Z∑
i=1

∫a
0
gri,i(z, t)gfo,i(z, t)

Ti(z, t) f(hi(z, t,xt(θ)))

cos ηi(z) sinκi(z)
dz, (1.5)

which is integrated over the axial depth of cut a (for more details, see [33]). f(h) indicates the
empirical specific cutting force characteristics and it is defined after Endres [64] (E in figure 1c) in
this work as

f(h) = colj fj(h) = colj
(
Kc,jh+Ke,j

(
1− e−Ejh

))
, (1.6)

where Ke,j are edge coefficients, Kc,j are cutting coefficients (similarly to the well-known shifted
linear characteristics, SL in figure 1c, whereas Ej are Endres’ [64] exponential factors in the
tangential t, radial r and axial a directions (j = t, r, a).

The main goal of this paper is to experimentally show the special bistable behaviour of milling
processes based on the properties of a time-periodic xP(t;ΩZ) and a quasi-periodic xQP(t;ΩZ , ω)

solution of (1.4) considering conventional milling process with constant spindle speed, when
F(t,xt(θ)) =F(t,x(t),x(t− τ)) (1.5).

(c) Linear stability
In order to analyse stability, one can introduce a so-called variational equation [13] ’around’ the
period-one stationary solution col(xP, ẋP) = col(U,U[λl]

2n
l=1)qP with time period TZ = τ

u̇(t) =D(t)u(t) +E(t)u(t− τ) + g(t,u(t),u(t− τ)), (1.7)

where q= qP + u. The time-periodic coefficient matrices are

D(t) = [λk]
2n
k +Uᵀ ∂F

∂x(t)
(t,xP(t),xP(t))U, E(t) =Uᵀ ∂F

∂x(t− τ) (t,xP(t),xP(t))U, (1.8)

respectively, while g(t, •, •) contains the higher order terms. Note that the stability of xP or,
equivalently, the stability of the trivial solution of (1.7) is a general requirement for a good quality
milling operation, where vibrations occur due to periodic forcing only. First, the linear part of
(1.7) is considered for stability analysis. According to the Floquet theory [13], the stability of the
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linear part of system (1.7) is determined by the monodromy operator U(T )

uT (θ) = (U(T )u0)(θ). (1.9)

The spectrum of the linear operator U(T ) consists of so-called characteristic multipliers denoted
by µ. If all multipliers lie inside the unit-circle of the complex plane, the time-periodic stationary
solution is asymptotically stable.

There exist several semi-analytical methods to discretize the operator U(T ) and approximate
it with a matrix A whose eigenvalues approximate the dominant characteristic multipliers (see
[25]). These methods lead to the following form

zp =Az0, (1.10)

where p∈N is the resolution of the time period, zj = colrl=0 utj (−l∆θ) is the discretized state with
t0 = 0, tp = T , ∆θ=∆t= T/p, and r= bτ/∆θc is the delay resolution. The semidiscretization
method (SDM) [27] is one of the simplest among these methods, which serves sufficiently accurate
results within reasonable computational time. In this paper, we used SDM to predict SLD’s (see
figure 3).

(d) Prediction of unstable tori
A nonlinear extension of the SDM [65] allows one to compute an approximation of the
unstable invariant quasi-periodic torus that arises from the stability boundary associated with
Hopf bifurcation. Via semidiscretization of the nonlinear system (1.7), a nonlinear map can
be constructed that approximates the nonlinear dynamics over the principal period TZ . A
third-order approximation of this map can be given in the form

zp =Az0 +
1

2
〈B, z0, z0〉+

1

6
〈C, z0, z0, z0〉 , (1.11)

where A is the coefficient matrix of the linear term, cf. (1.10), while B and C are the third- and
fourth-order coefficient matrices of the quadratic and cubic terms. These matrices can be obtained
from D, E and g in (1.7) by using the formulas in [65]. The products denoted by angle brackets
are defined as 〈B,x,y〉 := [Bjklxkyl], 〈C,x,y, z〉 := [Cjklmxkylzm] using index notation.

Via bifurcation analysis of the trivial fixed point of map (1.11) [66], the occurrence of invariant
tori can be predicted and their unstable behaviour can be shown. A constant parameter δcr can be
computed from the coefficient matrices in (1.11), whose sign determines the stability of the arising
invariant tori (they are unstable for δcr > 0 and stable for δcr < 0). In addition, the approximate
amplitude r of the solutions located on the invariant tori can be calculated according to [67]

r(a)≈

√
−|µ|

′
cr(a− acr)
δcr

acr
a
. (1.12)

Here, acr is the critical axial depth of cut at the boundary of stability and |µ|′cr is the so-called root
tendency, which is associated with the eigenvalues of matrix A (for details, see [65]). Note that this
expression excludes the existence of invariant tori for zero axial depth of cut (a= 0), where (1.4)
simplifies to a damped free oscillator that has no periodic or quasi-periodic solutions [67].

The results help to quantify the extent of the bistable zones in the space of technological
parameters. The comparison of the experimental and theoretical bifurcation diagrams also helps
select a simple but still accurate enough nonlinear cutting force characteristics f(h) that satisfy
the requirements of manufacturing industry.

2. Revealing unsafe zone in milling processes
In this section, different measurement techniques capturing the unsafe zone phenomenon in
milling processes are summarized. Special attention is paid to the existence and sensitivity of this
phenomenon. While its existence can be investigated relatively easily (for example with a harsh
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entrance into the workpiece, see figure 2ab, an exact quantitative description of its sensitivity is
an extremely complicated task.

To establish an effective measurement technique for the experimental investigation of the
unsafe zone, one needs to distinguish between stable stationary cutting (SSC) and stable
chattering (limiting) motion (CH). These can exist simultaneously for the same set of technological
parameters, that is, mathematically speaking, bistability can occur. Although much larger
amplitude is expected for chatter than for the stationary cutting state, this property cannot always
be used for the direct detection of chatter. In measurement circumstances it may be impossible to
measure oscillations directly at the tool tip and sensors must be further away from the cutting
zone. In such cases, chatter may be detected by the inspection of its distinctive spectrum and/or
the surface pattern left on the workpiece.

As it was shown in [68], an impact can induce a transition from stationary cutting process to
chattering motion. This phenomenon is also shown in figure 2c, where a prepared laboratory
experiment was used to demonstrate the existence of the unsafe zone. Although this hitting
methodology appears simple and promising, the quantification of the perturbation caused by
the impact is not trivial. Since the impulse is scattered all over the bandwidth, it might result in
an unsatisfactory excitation around the sensitive (chatter) frequency. In addition, one might hit
the process in the ’wrong direction’ that does not induce chatter. Since the phase space of a DDE

is infinite-dimensional, the perturbation may completely bypass the unstable invariant torus that
repels the motion towards the chattering state [33].

One possible solution to avoid the quantification issues is the exploitation of hysteresis
effects caused by the subcritical behaviour of cutting, which is a common approach in nonlinear
dynamics. In milling, this can be realized by using a symmetric roof-shaped workpiece, by which
a regular increase and decrease of the axial depth of cut is ensured (see figure 2d, [46]). Although
the existence of the bistability phenomenon is clearly revealed by this method, the quantification
of the bistable region leads to difficulties again. The slope of the roof-shaped workpiece must
be small in order to improve measurement quality, since the theoretical prediction is typically
performed by assuming constant bifurcation parameter in time. This assumption does not hold,
since the finite (small) length of the workpiece results in a relatively steep and highly tilted upper
surface causing significant rate of change in the axial depth of cut. Variation of the bifurcation
parameter in time generates a dynamic bifurcation effect [48,69], which shifts even the linear
stability boundaries depending on the sign and the rate of the parameter change. This shift may
appear to be hysteresis while the real mechanisms behind bistability remain hidden.

To avoid the dynamic bifurcation effect, one can manufacture steps (figure 4b) on top of the
workpiece. The steps result in a discrete increase and decrease of the axial depth of cut. However,
due to the limited number of the steps that can be machined within the finite length of the
workpiece, the resolution of this method is insufficient to determine the size of the unsafe zone
accurately. This experimental method is suitable only for showing the existence of the unsafe zone
phenomenon without involving a dynamic change of the bifurcation parameter, and for providing
a rough estimation of the size of the unsafe zone. In the paper, this methodology is referred to as
’step measurement’ (SM).

As a final approach, the idea of harmonic excitation is considered. The vibratory system is
excited by a burst harmonic perturbation that mimics the chatter frequency. This experimental
method needs sophisticated instrumentation. It requires a built-in actuator that is capable of
providing the force needed to move the machine tool structure with a given amplitude and
frequency. This was realized by a built-in inertial drive (ID) in a large heavy-duty milling machine
as shown in figure 5f . This measurement technique is referred to as ’harmonic test’ (HT).

This paper focuses on the dynamics of the SM and HT methodologies, in order demonstrate
the existence of the unsafe zone, and to quantify the effect of unstable invariant tori without any
effects from dynamic bifurcations. The conclusions use experimental observations that are then
related to the analysis of a mechanical model of the milling process.
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Figure 2: The effect of harsh workpiece entry (ent.) is presented in (ab). Bistability is triggered by
a hammer blow similarly [68,70] in (c), while the rooftop measurement is presented in (d) [46].

3. Preliminary experiments
In order to conduct a series of measurements demonstrating the effect of unsafe zone, preliminary
tests must be performed to characterize the workpiece material and the dynamic behaviour of
the machine tool. In this section, cutting force characteristics, machine tool dynamics and linear
stability are investigated experimentally and summarized for both the SM and HT cases. Note that
the SM was performed in a laboratory while the HT took place in industrial environment.

A series of down milling (DM) tests were carried out for different chip thickness values
using workpiece materials AL2024-T351 in SM and C45 in HT. For AL2024-T351, the nonlinear
cutting force parameters in (1.6) were directly identified from a dense equidistant measurement
set [17] resulting in: Kc,j = (1049.8, 532.9, 0)MPa, Ke,j = (13.4, 15.2, 0) kN/m and Ej =

(66.9, 45.4, 0) · 103/m. In the case of C45, the linear cutting force parameters Ke,j and Kc,j were
measured only, since there was no possibility to perform extensive measurement series in the
industrial environment of the HT: Kc,j = (1889, 734, 387)MPa, Ke,j = (69.7, 83.2, 87.6) kN/m.
The exponents Ej = 200 · 103/m in the HT case were fit heuristically such that they do not
contradict with the linear stability observations discussed below. Its value needs to be large
enough to mimic the industrial shifted linear characteristics around the average chip thickness
and small enough to capture finite tangent when the chip thickness vanishes.

Modal tap tests were also performed on the milling tool-tip to determine the overall dynamic
behaviour of the milling machine (black lines in figure 3adg). The modal parameters were
determined by assuming linear non-proportionally damped dynamics (red lines in figure 3adg
[63,71]). The parameters were later used for linear stability analysis (see figure 3cfj). A smaller
dominant set of proportional modes (blue lines and tables in figure 3, where Uk = pk/

√
mk and

‖p‖= 1) were also used later for performing nonlinear SDM.
Experimental stability (chatter) tests were performed for both the SM and the HT in order to

see the discrepancies from theoretical linear stability predictions. The results are summarized in
figure 3. In the lab environment (SM), chatter tests were performed with machining properties
MP1:{Z = 2, ae = 10mm, DM, D= 16mm, κ= 90deg, η= 30deg} (figure 3) on a dense grid of
technological parameters, see the green circles (stable stationary cutting, SSC), the red crosses
(chatter, CH) and the blue diamonds (undetermined case) in figure 3a. It is important to note
that there is a difference from the theoretical prediction (black line) both in terms of elevation
(axial depth of cut) and ’resonances’ (natural frequencies). Both can be explained by the change of
the dynamics during cutting compared to the non-operating (tap tested) case. In fact, for the SM

setup a dummy tool was shot by softball and measured by laser displacement sensor in order to
estimate varying dynamics during spindle rotation (without cutting). Modifying functions were
used for ωn,k(n) and ζk(n) accordingly [53] (figure 3c).
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Figure 3: The left and right panels show results for SM and HT cases. The corresponding FRF’s are
shown in (adg), where black and red colours indicate the measured and the fit FRF’s. Low-DOF
proportional fit (beh) used for the nonlinear analysis is depicted by blue curves in (adg). Measured
and calculated SLD’s are shown for the lab SM (c) and industrial HT (fj) tests. For all MP’s
vibration (chatter) frequency plots i and the actual stability charts are presented ii. In ii black and
blue curves are the non-proportional and the selected dominant proportional results boundaries.
Stable and unstable stationary cutting (SSC/USC) tests are denoted by • and ×. Undetermined
tests are denoted by �.

In the industrial (HT) case, up milling (UM) chatter tests were performed at a chosen spindle
speed only, in order to provide validation of theoretical stability analysis for each ram position.
The samples corresponding to MP2:{Z = 8, ae = 100mm, UM,D= 125mm, κ= 45deg, η= 0deg}
and MP3:{Z = 8, ae = 60mm, UM,D= 125mm, κ= 45deg, η= 0deg} are presented in figure 3fj,
where some differences from theoretical results (shown by black and blue lines) were again
experienced.

After the chatter tests, the nonlinear experiments were prepared based on the measured SLD’s.
In the SM case, spindle speeds are selected from the regions where the predicted and measured
stability limits are close to each other. For the HT cases, the two validated spindle speeds are
accepted for later nonlinear analysis.

4. Step measurement (SM)
The SM is one of the simplest approach to demonstrate the phenomenon of bistability while
excluding the dynamic bifurcation effect. Based on the results of experimental chatter tests
(figure 3c), the workpiece is prepared such that steps are machined onto it in increasing and
then in decreasing order (figure 4b). Since the length of the workpiece is given, a trade-off must be
made between the number and the length of steps. It is important at all steps to provide enough
space (time) for the tool to reach its stationary state. Obviously, there is smaller possibility to
capture the phenomenon of bistability in the SM than in the HT due to the limited resolution of
axial depth of cut steps on the workpiece. When the measurements do not capture bistability, the
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Figure 4: Summary of the step measurement SM performed with the first set of machining
properties MP1, whose setup is presented in panel (a). The geometry of the workpiece is presented
in (b). The time-frequency diagram of the performed measurements A-F are presented in (c-h).
The harmonics of the spindle and tooth passing frequencies are indicated by side ticks, while
the dominant (chatter) frequency is marked by arrows. Bistable zones are demonstrated with
asymmetric orders of the SSC: ’stable stationary cutting’, CH: ’chatter’, S(n): ’stable with noise
resonance’ cases. AP stands for ’approaching phases’. (see video footage [73].)

test results cannot be distinguished from supposingly linear chatter tests where instability should
arise in symmetric arrangement along the steps.

For the measurements, we also use the industrial jargon to label vibration states as ’stable’ as
stable stationary cutting and ’chatter’ (denoted by SSC and CH, respectively). In fact, all these
states are related to a stable invariant object of the dynamical system (1.4). Chatter CH state
involves both the evolved threshold vibration and the onset of amplifying vibrations originated,
on the one hand, from the unstable stationary cutting (USC) period one solution xP. The stability
loss is caused by an orbital Hopf bifurcation [13], which introduces dominant (chatter) frequency
(figure 3 i) and its modulations [72]. The Hopf bifurcation in the nonlinear milling model is
subcritical and gives rise to an unstable invariant torus branch (ITB) of quasi-periodic solutions
xQP with ΩZ and ωc. The arising subcritical branches can be found by e.g. nonlinear SDM [65]
or path-following methods based e.g. collocation [33]. On the other hand, this unstable torus can
also repel the process from the expected SSC to an amplifying solution toward the the threshold
(CH) state that we hear and measure in the long term. The threshold vibration state can be quasi-
periodic or chaotic resembling the frequency content of the linear solution [74]. Large amplitude
severe chatter is typically more chaotic in nature and deviates more from the linear spectrum.

It is important to note that cutting is not a ’clean’ process; specifically, for parameter values
near the linear stability boundary, noise-induced coherence resonance activates oscillations with
frequency content similar to that of chatter [75]. We denote this weak frequency content as S(n),
which appears in the otherwise stable region. We distinguish between this coherence resonance
and the threshold state of chatter using a heuristic approach based on the higher frequency
modulation of the dominant chatter frequency ωc (see A in figure 4c).

The results of the SM’s are discussed below. The SM’s that show an asymmetric pattern of
SSC/S(n) and CH states indicates the existence of the bistable zone. Experiments with a symmetric
pattern could either imply linear behaviour or indicate that the resolution of the steps was
insufficient to reveal the asymmetry. Since we experienced not only symmetric but asymmetric
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patterns, too, we believe the second is true. The performed SM’s (A-F) are depicted in figure 4c-h.
The corresponding axial depth of cut values span through the experimental stability limit shown
by ’combs’ in figure 3c ii. In all tests, the feed was fZ = 0.1mm/tooth, that is, the tool was rotating
roughly 150 times at each step. Lateral acceleration signals were acquired in two directions on the
spindle and in one on the workpiece, while sound pressure was also measured (figure 4a).

Wavelet transformation was performed for all signals to obtain a good quality time-frequency
diagram. Among all recorded signals, the y-directional acceleration of the spindle carried the
richest frequency spectrum (figure 4). In all time-frequency plots, harmonics of Ω and ΩZ are
indicated by white and black side-ticks. The instances where the axial depth of cut changed
are indicated with thin ’horizontal’ black lines. The dominant vibration (chatter) frequency is
indicated by black arrow. Note that frequency contents, which do not have a relation with the
actual cutting process can be identified at the approaching phase (AP) parts. According to figure 4,
all measurements start with a defined SSC or S(n) state. Only three measurements (D, E, F) exhibit
the bistability phenomenon, while the others are symmetric (measurements A, B, C).

In the symmetric case A, strong harmonics of ΩZ = 200Hz appear, while harmonics of Ω =

100Hz are also visible due to tool run-out. Weak noise-induced coherence resonance appears in
the critical dominant frequencies before and after the CH, identified as S(n). Measurement A &
B contains brief but strong CH state in the middle of the tool path with weak modulations of
slightly changing frequency. Clear chatter regions with strong base and modulation frequencies
are arranged symmetrically in measurement C, where strong changes of the chatter frequencies
can be followed. Measurement D starts with an SSC, followed by coherence resonance S(n) of the
frequency associated with the critical eigenvalue, then transitioning to clear chatter case, which
later appears as an asymmetric measurement case with strong chatter followed by S(n) in the end.
This asymmetric arrangement is forming an evidence for bistability. The next measurement E
starts in the coherence resonance state S(n), transitioning to strong asymmetric chatter till the end
of the workpiece. Obviously, some doubt can appear in this case since the whole measurement
started with an almost unstable case, but the chatter stays so strong in the end, without any sign
of settle, we identified this case as a weak evidence for the bistability. Measurement F is the most
clear proof of bistability; it illustrates a slight noise in the increasing depth cut part and strong
chatter in the decreasing depth of cut part. Even if one considers the noisy S(n) state as CH (which
is not the case), the following CH states still strongly support the existence of bistability.

The HT experiment was designed to overcome the resolution problems of the SM and to show
that bistable zones can appear even for a large industrial machine with a different workpiece
material.

5. Burst harmonic perturbation (HT)
This form of excitation can be considered as the controlled version of the hammer blow figure 2c,
where the aim is to push the system out from its local SSC state by some form of disturbance. Note
that HT avoids the potential confusion of the dynamic bifurcation effect, as shown in figure 2d.
Here, according to the initial linear calculations presented in figure 3, we excite the system with
a burst of harmonic force set to the calculated dominant vibration (chatter) frequency figure 3i.
By gradually increasing the excitation amplitude of the built in exciter, theoretically the unstable
object that separates the bistability can be found. It is important to emphasize that the exciter
(inertial drive, ID) is mounted on the ram (see figure 5f ), which means the excitation is really
unlocalized. Without any characterization of the ID and the ram structural mechanics the real
actual amplitude of the tool can not be given.

In this manner, the only aim is to show that there is a limit excitation amplitude that separates
the SSC from CH. By avoiding any characterization of the ID this limiting value is a voltage value,
which refers to the driving voltage amplitude of the injected harmonic excitation. A new vibratory
state is introduced referred to this excitation burst denoted by E. During the E part the system is
forced both by the cutting and the excitation forces resulting in a quasiperiodic forced state. It is
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/

Figure 5: Panels (a-e) measurements are presented related to the second set of machining
properties MP2 with n= 510 rpm. In (f ) the measurement setup is presented with a ram-type
three axis heavy-duty milling machine on which an inertial drive ID was mounted. Panels (g-k)
presents the results related to MP3 with n= 350 rpm. In (l) a typical surface pattern is presented
during SSC/E/CH cases. The different segments are indicated with ’horizontal’ lines. The E state
related to the external excitation is denoted by ID.

believed that this quasiperiodic forced state can push out the system to its threshold CH state and
staying on after strictly ending the E part.

Due to the flexibility of the ram, the motion is also copied to the face surface of the workpiece,
in which the different zones can be identified (figure 5l). The SSC creates the usual ’feed pattern’,
which is considered as the desired milling process. When the excitation switched on the system
responses with a quasi-periodic forced state E. Then, by the vanishing external forcing from ID,
the mechanical system has its ’free motion’ (only excited by the regenerative cutting force) and
the threshold motion CH might arise.

In this section, two measurement sets are presented related to the initial linear calculations
(figure 3fj) for two different ram extensions. Among the measurement sets one of them can be
considered as a clear evidence of bistability (HT, MP2, figure 3f , figure 5a-e), while the other one
(HT, MP3, figure 3j, figure 5g-k) can be considered as a weak but valid proof.

As an initial measurement HT sets were performed atΩ = 500 rpm, however the bistable effect
was weak and except some successful trials the 500rpm was considered as a failed attempt.
Then, the spindle speed was set to Ω = 510 rpm, where it was possible to see and measure the
phenomenon. The results presented in figure 5 are ordered from the top to the bottom with
decreasing axial depth of cut a. The cutting process was completely CH at a= 2.3mm. The first
presented result at the top are for a= 2.2mm, where the asymmetric (SSC/E/CH) behaviour
can be realized for drive voltage amplitude V = 1V (figure 5b), which vanishes at V = 0.5V
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(figure 5a). The spindle and tooth passing harmonics are denoted in the same manner as it
was explained in Sec. 4. This measurement was considered as a successful strong evidence of
bistability, even though using V = 1V (figure 5b) initially some self-excitation had appeared due
to the entrance, which died out (figure 2ab). By decreasing the axial depth of cut to a= 2mm
the limit voltage increased between V = 2V (figure 5c) and V = 3V (figure 5d). In this case the
V = 3V case is strongly bistable, while in the case of V = 2V some leftover vibration remained
after E part, but it died out. During the experiment, it was verified that a further decrease in
the voltage would result in a more rapid ’die-out’ of this leftover vibration, consequently it has
considered as the limit for the selected a. In the last case, when a= 1.8mm no bistability was
found (SSC/E/SSC) even using V = 10V (figure 5e) drive voltage amplitude for the inertial drive.
According to this result, it can be concluded that the Ω = 510 rpm measurement shows the effect
of subcritical Hopf bifurcation, namely, the appearance of the bistabile state ’below’ the stability
limit in a.

The next set of measurement was performed with lower ram extension for Ω = 350 rpm with
MP3. Again, the panels are ordered in a decreasing axial depth of cut manner from the top to
the bottom in figure 5g-k. This set of measurement was more sensitive for perturbation and most
of the cases the predicted dominant chatter frequency was a bit apparent in the time signals,
even though it does not leave any recognizable mark on the surface (figure 5l). Notwithstanding,
there was significant difference between the apparent chatter frequency and the really chattering
case, distinguished with S(n) and CH. First, completely unstable (CH/E/CH, not presented here)
case was measured at a= 2.1mm. Then S(n)/E/S(n) and S(n)/E/CH types were experienced
introducing V = 0.1V (figure 5g) and V = 0.2V (figure 5h) voltages, respectively, for a= 2.0mm.
By decreasing the depth of cut to first a= 1.9mm, then to a= 1.8mm the limit voltage remained
between V = 0.1V (figure 5i) and V = 0.2V (figure 5j). The weak bistability was demonstrated,
although dominant (chatter) frequency was apparent during all tests, somewhat as a sign the
operation was extremely close to the stability boundary. In the end at a= 1.7mm the system
remained clearly stable (SSC/E/SSC) even setting V = 10V drive amplitude, as presented in
figure 5k.

According to the result presented in this section the existence of the bistability is clearly
demonstrated, although it was not apparent clearly in every trial. It can be considered as a
quite remarkable achievement to experience this highly nonlinear phenomenon in this industrial
case. Also, the difference in a does not seem significant, however, it reaches 10%, which can be
considered as a small but noticeable difference.

6. Reconstruction of bifurcation diagrams
In this section, we construct the empirical bifurcation diagrams and compare them to the
theory. In all examples, the transmissibility between the sensor locations and the tool tip was
measured by using experimental modal analysis [63] to overcome the unlocalized nature of the
signal acquisition (figure 4a & 5f ). The stationary period one solution (SSC/USC) was predicted
numerically, while the subcritical invariant torus branches (ITB’s, [33]) were estimated by using
nonlinear SDM (subsection 1.12) and path-following collocation method [33].

The comparison is presented in figure 6 both for the SM and HT cases. The bifurcation diagrams
are constructed by adding the vibration amplitudes Ast and Ac corresponding to the tooth
passing frequency ΩZ of the stationary solution (forced vibration) and to the dominant chatter
frequency ωc, respectively, for various depths of cut a. In all cases presented in figure 6, the
deviation between theoretical and experimental results can be attributed, on the one hand, to
the significant discrepancies in linear stability predictions (figure 3a ii). This causes a shift in the
diagrams with respect to a. On the other hand, there is a shift in the amplitude of the stationary
solution (SSC/USC), too. This is due to the experienced runout of the two-fluted carbide milling
tool, which affects the tooth passing harmonics ΩZ by transferring kinetic energy to the spindle
harmonics Ω. In figure 6 ’hand’-fit experimental branches are depicted with thick lines, in which
a similar trend can be recognized as in the theoretical predictions (thin lines). For example, it
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and HT cases are affected by the shift of the linear behaviour (see figure 3). In the diagrams, thin
lines present the theoretical solutions, while thick ones represent the measurement results. Green
and red correspond to stable and unstable objects, respectively. In SM case, 4 and 5 indicate
increasing and decreasing step phases, while in HT, they indicate the measured amplitudes above
and below the critical limit. Measurements � correspond to measured CH states ’above’ USC.
Fly over points (FO) were determined according to [33] for the predicted diagrams.

can be explained why measurement A shows symmetric and why measurement F shows highly
asymmetric arrangements in terms of a in figure 4. This is caused by the relative steepness of the
quasiperiodic branch in figure 6 [33].

A much better correlation of theory and experiments can be observed in the HT (figure 6ef )
case, where both bifurcation diagrams are better justified in terms of the Hopf point (H) and
the vibration amplitudes. Note that only the measurement at n= 510 rpm in figure 6e can be
considered as a clean test, due to the continuous slight appearance of the chatter frequency in the
case n= 350 rpm presented in figure 6f . Regardless of the expected discrepancies in the stability
limit (H), the curvature of the emerging unstable quasiperiodic branch (ITB) is well given by the
theory, which results in lower vibration amplitude for the large amplitude chatter branch.

In all cases significant difference can be recognized between the invariant torus branches (ITB)
constructed by nonlinear SDM and the path-following technique. This is due to the low order
approximation of the SDM, which cannot follow the real curvature of the emerging ITB branches.

The first fly over moment (FO) can be realized by determining the local chip thicknesses
(1.2). Theoretically this would refer to the size of the unsafe zone, but in milling this connection
is questionable due to the multiple edges participating in the cutting process. Even by the
consideration of minimum possible chip thickness [76], in SM cases, the FO point comes ’early’
after the Hopf (H) point, which can cause the fold of these branches, rather experiencing
supercritical nature right after the subcritical emerging. This would be opposite to the experienced
really strong subcritical nature of e.g. test F in figure 4. In the HT cases the FO appears much
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’further’ from H points, due to the quite stiff y directional modes, which prevents ’early’ fly over
in the process. Moreover, due to the high edge number (Z = 8) the fold would appear after much
more significant subcritical behaviour as it was experienced in the tests.

7. Conclusion
Milling processes in metal cutting are modelled by delay differential equations with parametric
and external excitation. The desired cutting process corresponds to a stable periodic solution
of these equations. When this periodic motion loses stability, undesired chatter occurs.
Unfortunately, chatter may appear also due to large enough perturbations in parameter domains
where the desired cutting process is stable. The existence of these so-called unsafe (or bistable)
parameter domains has been shown theoretically and experimentally.

The bifurcation analysis of the periodic delay differential equation models predicted the
existence of unstable quasi-periodic solutions emerging from a subcritical generalized Hopf (or
Neimark-Sacker) bifurcation of the desired periodic solution. The nonlinear extension of the
semidiscretization and the path-following collocation methods made it possible to carry out
these calculations. The parameter points where the fly over effect appears first on the unstable
quasi-periodic solutions were also determined.

In order to check the results, two different experimental techniques were developed, both of
which avoid the dynamic bifurcation effect related to slowly varying bifurcation parameters.
While the step measurement (SM) is straightforward, the harmonic burst excitation (HT) needs
expensive instrumentation built in the machine tool. The SM technique was strongly influenced
by the dynamics of the rotating spindle, which was taken into account by the method presented
in [53]. Qualitative agreement was shown between theory and experiments with theoretical
results being somewhat shifted compared to the experimental ones. The HT case was presented
with less number of measurements, but it can still be considered as an appropriate industrial
demonstration of the phenomenon.

In some cases, the SM was not able to capture the phenomenon due to the insufficient
resolution of the parameter steps. In the meanwhile, especially in the HT case, noise induced
vibrations caused resonance of the nearby multipliers, which can be taken mistakenly as chatter
vibration. Still, it is now confirmed even in case of an industrial case study that the presented
theory is capable of predicting the qualitative behaviour of milling processes for small and large
perturbations, that is, both on linear and nonlinear level. This mostly experimental work proved
that subcritical bifurcation, that is, bistability phenomenon exists in milling processes, although it
is extremely difficult to obtain accurate quantified agreement between theory and experiments.

The bistable behaviour is experienced by the machinist through the asymmetric behaviour
of certain machining operations. These observations are explained the intricate delayed and
nonlinear dynamics that originates in the milling process itself. This phenomenon appears already
without the consideration of the fly-over effect, which limits the growing nonlinear vibrations. In
milling processes, the fly-over appears in strange rhythms due to the multiple edge arrangements,
which, in extreme cases can cause even a full one-revolution escape of the tool. Many effects
including run-out and rubbing/cutting transitions [76] influence this complex but still pure
geometric picture, which all need to be considered for an improved approach. From industrial
view-point it would be also useful if those chatter states were selected and characterized, which
are still acceptable due to their moderate vibration amplitudes.
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